Forest canopy height from the Multiangle Imaging SpectroRadiometer (MISR) assessed with high resolution discrete return lidar

نویسندگان

  • Mark Chopping
  • Anne Nolin
  • Gretchen G. Moisen
  • John V. Martonchik
  • Michael Bull
چکیده

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: a b s t r a c t a r t i c l e i n f o In this study retrievals of forest canopy height were obtained through adjustment of a simple geometric-optical (GO) model against red band surface bidirectional reflectance estimates from NASA's Multiangle Imaging SpectroRadiometer (MISR), mapped to a 250 m grid. The soil-understory background contribution was partly isolated prior to inversion using regression relationships with the isotropic, geometric, and volume scattering kernel weights of a Li-Ross kernel-driven bidirectional reflectance distribution function (BRDF) model. The height retrievals were assessed using discrete return lidar data acquired over sites in Colorado as part of the Cold Land Processes Experiment (CLPX) and used with fractional crown cover retrievals to obtain aboveground woody biomass estimates. For all model runs with reasonable backgrounds and initial b/r (vertical to horizontal crown radii) values b2.0, root mean square error (RMSE) distributions were centered between 2.5 and 3.7 m while R 2 distributions were centered between 0.4 and 0.7. The MISR/ GO aboveground biomass estimates predicted via regression on fractional cover and mean canopy height for the CLPX sites showed good agreement with U.S. Forest Service Interior West map data (adjusted R 2 = 0.84). The implication is that multiangle sensors such as MISR can provide spatially contiguous retrievals of forest canopy height, cover, and aboveground woody biomass that are potentially useful in mapping distributions of aboveground carbon stocks, tracking disturbance, and in initializing, constraining, and validating ecosystem models. This is important because the MISR record is spatially comprehensive and extends back to the year 2000 and the launch of the NASA Earth Observing System (EOS) Terra satellite; it might thus provide a ~ 10-year baseline record that would enhance exploitation of data from the NASA Deformation, Ecosystem Structure and Dynamics of Ice (DESDynI) mission, as well as furthering realization of synergies with active instruments. Mapped estimates of forest canopy height, fractional cover, and aboveground woody biomass are relevant to important science questions regarding carbon storage and cycling, susceptibility to wildfire, gaseous and particulate emissions from wildfire, changes in structure from disturbance (pathogens, insect outbreaks, wildfire, storms, forest management practices such as thinning and …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forest canopy height from Multiangle Imaging SpectroRadiometer (MISR) assessed with high resolution discrete return lidar

a r t i c l e i n f o In this study retrievals of forest canopy height were obtained through adjustment of a simple geometric-optical (GO) model against red band surface bidirectional reflectance estimates from NASA's Multiangle Imaging SpectroRadiometer (MISR), mapped to a 250 m grid. The soil-understory background contribution was partly isolated prior to inversion using regression relationsh...

متن کامل

An assessment of Multiangle Imaging Spectroradiometer (MISR) stereo-derived cloud top heights and cloud top winds using ground-based radar, lidar, and microwave radiometers

[1] In this article stereoscopically derived cloud top heights and cloud winds estimated from the Multiangle Imaging Spectroradiometer (MISR) are assessed. MISR is one of five instruments on board the NASATerra satellite. The cloud top height assessment is based on a comparison of more than 4 years of MISR retrievals with that derived from ground-based radar and lidar systems operated by the U....

متن کامل

Multiangle Imaging of the Earth: Present and Future

The Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard the Terra spacecraft is pioneering a new paradigm in remote sensing of the Earth's environment and climate system. MISR acquires radiometrically and geometrically calibrated imagery at moderately high spatial resolution (275 m) over a widelyspaced array of along-tracking viewing angles (up to 70" from local vertical). New algori...

متن کامل

Estimation of vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from atmosphere-corrected MISR data

The multiangle imaging spectroradiometer (MISR) instrument is designed to provide global imagery at nine discrete viewing angles and four visible/near-infrared spectral bands. This paper describes an algorithm for the retrieval of leaf area index (LAI) and fraction of photosynthetically active radiation absorbed by vegetation (FPAR) from atmospherically corrected MISR data. The proposed algorit...

متن کامل

Application of Semi-Automated Filter to Improve Waveform Lidar Sub-Canopy Elevation Model

Modeling sub-canopy elevation is an important step in the processing of waveform lidar data to measure three dimensional forest structure. Here, we present a methodology based on high resolution discrete-return lidar (DRL) to correct the ground elevation derived from large-footprint Laser Vegetation Imaging Sensor (LVIS) and to improve measurement of forest structure. We use data acquired over ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009